EE 508

Lecture 41

Basic Filter Components

- All Pass Networks
- Arbitrary Transfer Function Synthesis
- Impedance Transformation Circuits
- Equalizers

Update from Lecture 31 Final Project Support

Consider now only the set of equations and disassociate them from the circuit from where they came

$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{in}}$

$$
\mathrm{V}_{8}=\mathrm{V}_{\text {out }}
$$

Update from Lecture 31 Final Project Support

Consider the first two stages:

$$
\left.\begin{array}{l}
\mathrm{V}_{1}^{\prime}=\left(\mathrm{V}_{0}-\mathrm{V}_{2}\right) \frac{1}{\mathrm{R}_{1}} \\
\mathrm{~V}_{2}=\left(\mathrm{V}_{1}^{\prime}-\mathrm{V}_{3}^{\prime}\right) \frac{1}{\mathrm{sC}_{2}}
\end{array}\right\} \quad \begin{aligned}
& \mathrm{V}_{2}=\left(\left(\mathrm{V}_{0}-\mathrm{V}_{2}\right) \frac{1}{\mathrm{R}_{1}}-\mathrm{V}_{3}^{\prime}\right) \frac{1}{\mathrm{SC}_{2}} \\
& \mathrm{~V}_{2}=\mathrm{V}_{\mathrm{IN}}\left(\frac{1}{1+\mathrm{R}_{1} \mathrm{C}_{2} \mathrm{~s}}\right)-\mathrm{V}_{3}^{\prime}\left(\frac{\mathrm{R}_{1}}{1+\mathrm{R}_{1} \mathrm{C}_{2} \mathrm{~s}}\right)
\end{aligned}
$$

These two blocks act as a single summing lossy integrator block with loss factor R_{1}

Update from Lecture 31 Final Project Support

Consider the last two stages:

$$
\left.\begin{array}{l}
V_{n-1}^{\prime}=\left(V_{n-2}-V_{n}\right) \frac{1}{s L_{n-1}} \\
V_{n}=V_{n-1}^{\prime} R_{n}
\end{array}\right\} \quad \begin{aligned}
& V_{n}=\left(V_{n-2}-V_{n}\right) \frac{1}{s L_{n-1}} R_{n} \\
& V_{n}=V_{n-2}\left(\frac{R_{n}}{s L_{n-1}+R_{n}}\right)
\end{aligned}
$$

These two blocks act as a lossy integrator block with loss factor R_{n}

Update from Lecture 31 Final Project Support

 Implementation with OTA-C Integrators:

$$
\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}\left(\frac{1}{\mathrm{sC}}\right)-\mathrm{V}_{\mathrm{C}}\left(\frac{1}{\mathrm{sC}}\right)
$$

Can fix either g_{m} or C on each stage (showing here for $g_{m}=1$)

Update from Lecture 31 Final Project Support

Implementation with OTA-C Integrators:

$$
\mathrm{V}_{2}=\mathrm{V}_{\mathrm{IN}}\left(\frac{1}{1+\mathrm{R}_{1} \mathrm{C}_{2} \mathrm{~s}}\right)-\mathrm{V}_{3}^{\prime}\left(\frac{\mathrm{R}_{1}}{1+\mathrm{R}_{1} \mathrm{C}_{2} \mathrm{~s}}\right)
$$

For 1Ω source termination this simplifies to:

Can fix either g_{m} or C on each stage (showing here for $g_{m}=1$)

Update from Lecture 31 Final Project Support

Implementation with OTA-C Integrators:

$$
V_{n}=V_{n-2}\left(\frac{R_{n}}{s L_{n-1}+R_{n}}\right)
$$

For 1Ω load termination this simplifies to:

Can fix either g_{m} or C on each stage (showing here for $g_{m}=1$)

Basic Filter Components

\longrightarrow •All Pass Networks

- Arbitrary Transfer Function Synthesis
- Impedance Transformation Circuits
- Equalizers

All-Pass Circuits

- Magnitude of Gain is Constant
- Phase Changes with Frequency
- Used to correct undesired phase characteristics of a filter

First-Order All Pass

$$
T(s)=\frac{s-\frac{1}{R C}}{s+\frac{1}{R C}}
$$

First-Order All Pass

$$
T(s)=\frac{s-\frac{1}{R C}}{s+\frac{1}{R C}}
$$

First-Order All Pass

$$
T(s)=-\frac{s-\frac{1}{R C}}{s+\frac{1}{R C}}
$$

First-Order All Pass

$$
T(s)=-\frac{s-\frac{1}{R C}}{s+\frac{1}{R C}}
$$

Second-Order All Pass

Based upon Bridged-T Feedback Structure

Second-Order All Pass

$$
\frac{V_{O}}{V_{I N}}=\frac{s^{2}-s\left(\frac{2}{R 2 C}\right)+\frac{1}{R 1 R 2 C^{2}}}{s^{2}+s\left(\frac{2}{R 2 C}\right)+\frac{1}{R 1 R 2 C^{2}}}
$$

Basic Filter Components

- All Pass Networks
- Arbitrary Transfer Function Synthesis
- Impedance Transformation Circuits
- Equalizers

Arbitrary Transfer Function Synthesis

- Based upon coefficient derivation
- Can be used to implement/solve an arbitrary differential equation
- Versatile
- Basic concept of Analog Computer

Applications of integrators to solving differential equations

Standard Integral form of a differential equation

$$
X_{\text {OUT }}=b_{1} \int X_{\text {OUT }}+b_{2} \iint X_{\text {OUT }}+b_{3} \iiint X_{\text {OUT }}+\ldots+a_{0} X_{I N}+\int X_{I N}+\iint X_{I N}+\ldots
$$

Standard differential form of a differential equation

$$
X_{\text {OUT }}=\alpha_{1} X_{\text {OUT }}^{\prime}+\alpha_{2} X_{\text {OUT }}^{\prime \prime}+\alpha_{3} X_{\text {OUT }}^{\prime \prime}+\ldots+\beta_{1} X_{I N}+\beta_{2} X_{I N}^{\prime}+\beta_{3} X_{I N}^{\prime \prime}+\ldots
$$

Initial conditions not shown

Can express any system in either differential or integral form

Applications of integrators to solving differential equations

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{IN}} \longrightarrow \begin{array}{c}
\text { Linear } \\
\text { System }
\end{array} \longrightarrow \mathrm{X}_{\text {OUT }} \quad \text { Consider the standard integral form } \\
& X_{\text {OUT }}=b_{1} \int X_{\text {OUT }}+b_{2} \iint X_{\text {OUT }}+b_{3} \iiint X_{\text {OUT }}+\ldots+a_{0} X_{I N}+\int X_{I N}+\iint X_{I N}+\ldots
\end{aligned}
$$

One Implementation (direct and intuitive)
This circuit is comprised of summers and integrators
Can solve an arbitrary linear differential equation This concept was used in Analog Computers in the past

Applications of integrators to solving differential equations

$$
\begin{aligned}
& \underset{\text { XIN }}{ } \longrightarrow \begin{array}{c}
\text { Linear } \\
\text { System }
\end{array} \longrightarrow \mathrm{X}_{\text {out }} \quad \text { Consider the standard integral form } \\
& \\
& X_{\text {OUT }}=b_{1} \int X_{\text {OUT }}+b_{2} \iint X_{\text {OUT }}+b_{3} \iiint X_{\text {OUT }}+\ldots+a_{0} X_{I N}+\int X_{I N}+\iint X_{I N}+\ldots
\end{aligned}
$$

Take the Laplace transform of this equation

$$
\boldsymbol{X}_{\text {OUT }}=b_{1} \frac{1}{\mathrm{~s}} \mathcal{X}_{\text {OUT }}+b_{2} \frac{1}{\mathrm{~s}^{2}} \mathcal{X}_{\text {OUT }}+b_{3} \frac{1}{\mathrm{~s}^{3}} \mathcal{X}_{\text {OUT }}+\ldots+b_{n} \frac{1}{\mathrm{~s}^{\mathrm{n}}}+a_{0} \mathcal{X}_{I N}+a_{1} \frac{1}{\mathrm{~s}} \mathcal{X}_{I N}+a_{2} \frac{1}{\mathrm{~s}^{2}} \mathcal{X}_{I N}+a_{3} \frac{1}{\mathrm{~s}^{3}} \mathcal{X}_{I N}+\ldots+a_{m} \frac{1}{\mathrm{~s}^{m}}
$$

Multiply by s^{n} and assume $m=n$ (some of the coefficients can be 0)

$$
\begin{gathered}
\mathrm{s}^{\mathrm{n}} \mathcal{X}_{\text {OUT }}=b_{1} \mathrm{~s}^{\mathrm{n}-1} \mathcal{X}_{\text {OUT }}+b_{2} \mathrm{~s}^{n-2} \mathcal{X}_{\text {OUT }}+b_{3} \mathrm{~s}^{\mathrm{n}-3} \mathcal{X}_{\text {OUT }}+\ldots+b_{n}+a_{0} \mathrm{~s}^{\mathrm{n}} \mathcal{X}_{I N}+a_{1} \mathrm{~s}^{\mathrm{n}-1} \mathcal{X}_{I N}+a_{2} \mathrm{~s}^{\mathrm{n}-2} \mathcal{X}_{I N}+a_{3} \mathrm{~s}^{n-3} \mathcal{X}_{I N}+\ldots+a_{n} \\
\mathcal{X}_{\text {OUT }}\left(\mathrm{s}^{\mathrm{n}}-b_{1} \mathrm{~s}^{\mathrm{n}-1}-b_{2} \mathrm{~s}^{\mathrm{n}-2}-b_{3} \mathrm{~s}^{\mathrm{n}-3}-\ldots-b_{n}\right)=\mathcal{X}_{I N}\left(a_{0} \mathrm{~s}^{\mathrm{n}}+a_{1} \mathrm{~s}^{\mathrm{n}-1}+a_{2} \mathrm{~s}^{\mathrm{n}-2}+a_{3} \mathrm{~s}^{\mathrm{n}-3}+\ldots+a_{n}\right) \\
T(s)=\frac{\mathcal{X}_{\text {OUT }}}{\mathcal{X}_{I N}}=\frac{a_{0} \mathrm{~s}^{\mathrm{n}}+a_{1} \mathrm{~s}^{\mathrm{n}-1}+a_{2} \mathrm{~s}^{\mathrm{n}-2}+a_{3} \mathrm{~s}^{\mathrm{n}-3}+\ldots+a_{n}}{\mathrm{~s}^{\mathrm{n}}-b_{1} \mathrm{~s}^{\mathrm{n}-1}-b_{2} \mathrm{~s}^{\mathrm{n}-2}-b_{3} \mathrm{~s}^{\mathrm{n}-3}-\ldots-b_{n}}
\end{gathered}
$$

Applications of integrators to solving differential equations

$$
\begin{gathered}
\mathrm{X}_{\mathrm{IN}} \longrightarrow \begin{array}{c}
\text { Linear } \\
\text { System }
\end{array} \longrightarrow \mathrm{X}_{\text {OUT }} \quad \text { Consider the standard integral form } \\
X_{\text {OUT }}=b_{1} \int X_{O U T}+b_{2} \iint X_{\text {OUT }}+b_{3} \iiint X_{\text {OUT }}+\ldots+a_{0} X_{I N}+\int X_{I N}+\iint X_{I N}+\ldots \\
T(s)=\frac{x_{O U T}}{\mathcal{X}_{I N}}=\frac{a_{0} \mathrm{~s}^{\mathrm{n}}+a_{1} \mathrm{~s}^{n-1}+a_{2} \mathrm{~s}^{n-2}+a_{3} \mathrm{~s}^{n-3}+\ldots+a_{n}}{\mathrm{~s}^{\mathrm{n}}-b_{1} \mathrm{~s}^{\mathrm{n}-1}-b_{2} \mathrm{~s}^{\mathrm{s}-2}-b_{3} \mathrm{~s}^{\mathrm{n}-3}-\ldots-b_{n}}
\end{gathered}
$$

This can be written in more standard form

$$
T(s)=\frac{\alpha_{n} s^{n}+\alpha_{n-1} s^{n-1}+\ldots \alpha_{1} \mathrm{~s}+\alpha_{0}}{\mathrm{~s}^{\mathrm{n}}+\beta_{n-1} \mathrm{~s}^{\mathrm{n}-1}+\ldots+\beta_{1} \mathrm{~s}+\beta_{0}}
$$

Applications of integrators to filter design

$$
\mathrm{X}_{\mathrm{IN}} \longrightarrow \underset{\text { System }}{\text { Linear }} \longrightarrow \mathrm{X}_{\text {OUT }} \quad T(s)=\frac{\alpha_{n} \mathrm{~s}^{\mathrm{n}}+\alpha_{m-1} \mathrm{~s}^{\mathrm{n}-1}+\ldots \alpha_{1} \mathrm{~s}+\alpha_{0}}{\mathrm{~s}^{\mathrm{n}}+\beta_{n-1} \mathrm{~s}^{\mathrm{n}-1}+\ldots+\beta_{1} \mathrm{~s}+\beta_{0}}
$$

Can design (synthesize) any $\mathrm{T}(\mathrm{s})$ with just integrators and summers !
Integrators are not used "open loop" so loss is not added
Although this approach to filter design works, often more practical methods are used

Applications of integrators to filter design

One Implementation (direct and intuitive)

What are some other architectural implementations?
Cascaded Biquads
Leapfrog
Though these other implementations may have better performance, not as easily programmable to realize different functions

Basic Filter Components

- All Pass Networks
- Arbitrary Transfer Function Synthesis
\longrightarrow - Impedance Transformation Circuits
- Equalizers

Impedance Synthesis

- Focus on synthesizing impedance rather than transfer function
- Gyrators will provide inductance simulation
- Capacitance Multiplication
- Synthesis of super components

Impedance Converters

Note these circuits are strictly one-ports and have no output node

Impedance Converters

Observe this input impedance is negative!

Impedance Converters

If $Z_{1}=R_{1}, Z_{2}=R_{2}$ and $Z_{3}=R_{3}, \quad Z_{\text {IN }}=-\frac{R_{1} R_{3}}{R_{2}}$
This is a negative resistor !

If $Z_{2}=1 / s C, Z_{1}=R_{1}$ and $Z_{3}=R_{3}$,
$Z_{\text {IN }}=-s C R_{1} R_{3}$
This is a negative inductor !

If $Z_{2}=R_{2}, Z_{1}=1 / s C$ and $Z_{3}=R_{3}$,

$$
Z_{\text {IN }}=-\frac{R_{3}}{s C R_{2}}
$$

This is a negative capacitor!

This is termed a Negative Impedance Converter

Impedance Converters

Modification of NIC to provide a positive inductance:

Replace Z_{1} itself with a second NIC that has a negative input impedance

Negative Impedance Converter

One application of NIC

If select components so that $R_{s}=\frac{R_{2}}{R_{1} R_{3}}$

Lossless
Inductor

Impedance Converters

This circuit is often called a Gyrator

Gyrator Analysis

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}=\mathrm{V}_{1} \mathrm{G}_{3} \\
& V_{\mathrm{x}}=\mathrm{V}_{1}+\mathrm{V}_{1} \mathrm{G}_{3} / \mathrm{G}_{4}=\mathrm{V}_{1}\left(1+\frac{\mathrm{G}_{3}}{\mathrm{G}_{4}}\right) \\
& \begin{array}{l}
\mathrm{I}_{\mathrm{Y}}=\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{X}}\right) \mathrm{G}_{1}=\mathrm{V}_{1}\left(-\frac{\mathrm{G}_{3}}{\mathrm{G}_{4}}\right) G_{1} \\
\mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{1}+\mathrm{I}_{\mathrm{Y}} / G_{2}=\mathrm{V}_{1}\left(1-\frac{\mathrm{G}_{3}}{\mathrm{G}_{4}}\left(\frac{\mathrm{G}_{1}}{\mathrm{G}_{2}}\right)\right)
\end{array} \\
& \begin{array}{l}
\mathrm{I}_{\mathrm{Y}}=\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{X}}\right) \mathrm{G}_{1}=\mathrm{V}_{1}\left(-\frac{\mathrm{G}_{3}}{\mathrm{G}_{4}}\right) \mathrm{G}_{1} \\
\mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{1}+\mathrm{I}_{\mathrm{Y}} / G_{2}=\mathrm{V}_{1}\left(1-\frac{\mathrm{G}_{3}}{\mathrm{G}_{4}}\left(\frac{\mathrm{G}_{1}}{\mathrm{G}_{2}}\right)\right)
\end{array} \\
& I_{1}=\left(V_{1}-V_{Y}\right) G_{5}=V_{1}\left(\frac{G_{3}}{G_{4}}\left(\frac{G_{1}}{G_{2}}\right)\right) G_{5} \\
& Z_{\text {IN }}=\frac{Z_{1} Z_{3} Z_{5}}{Z_{2} Z_{4}}
\end{aligned}
$$

Gyrator Applications

$$
Z_{\text {IN }}=\frac{Z_{1} Z_{3} Z_{5}}{Z_{2} Z_{4}}
$$

If $Z_{1}=Z_{3}=Z_{4}=Z_{5}=R$ and $Z_{2}=1 / s C \quad Z_{\text {IN }}=\left(R^{2} C\right) s$
This is an inductor of value $L=R^{2} C$

If $Z_{2}=R_{2}, Z_{3}=R_{3}, Z_{4}=R_{4}, Z_{5}=R_{5}$ and $Z_{1}=1 / s C \quad Z_{\text {IN }}=\frac{R_{3} R_{5}}{s C R_{2} R_{4}}$
This is a capacitor of value

$$
C_{E Q}=C \frac{R_{2} R_{4}}{R_{3} R_{5}}
$$

(can scale capacitance up or down)
If $Z_{2}=Z_{4}=Z_{5}=R$ and $Z_{1}=Z_{3}=1 / s C \quad Z_{\text {IN }}=\left(R^{3} C^{2}\right) s^{2} \quad$ This is a "super" capacitor of value $R^{3} C^{2}$

Impedance Converters

$$
\begin{gathered}
I_{1}=\left(V_{1}-\left(\frac{Z_{1}}{Z_{1}+Z_{2}}\right) V_{1}\right) G_{3} \\
Z_{\text {IN }}=Z_{3}\left(1+\frac{Z_{2}}{Z_{1}}\right)
\end{gathered}
$$

If $Z_{3}=R_{3}, Z_{2}=R_{2}$ and $Z_{1}=1 / s C$

$$
\mathrm{Z}_{\mathrm{IN}}=\mathrm{R}_{3}+\mathrm{s}\left(\mathrm{CR}_{2} \mathrm{R}_{3}\right)
$$

Basic Filter Components

- All Pass Networks
- Arbitrary Transfer Function Synthesis
- Impedance Transformation Circuits Equalizers

Shelving Equalizers

- Widely used in audio applications
- User-programmable filter response

Shelving Equalizers

(A) High frequency.

Shelving Equalizers

(B) Low frequency.

Fig. 6-37. Shelving equalizers.

Shelving Equalizers

- The expressions for f_{L} and f_{H} for the previous two circuits show a small movement with the potentiometer position in contrast to the fixed point location depicted in this figure
- The OTA-C filters discussed earlier in the course can be designed to have fixed values for f_{L} and f_{H} when cut or boost is used.

Stay Safe and Stay Healthy !

End of Lecture 42

